Location
St. Louis, Missouri
Presentation Date
13 Mar 1991, 1:30 pm - 3:30 pm
Abstract
Safety requirements for structures built in seismic regions have led to techniques for absorbing the energy induced to these structures by earthquakes. Passive isolation systems such as base isolators are suitable for low-rise structures but they provide only a partial solution to the problem. This paper presents three active control techniques for reducing the dynamic response of machine supporting foundations. The concept of active control is discussed and various control strategies are presented. The active tendon system (ATS), active mass damper (AMD), and active base control (ABC) mechanisms are examined. Both optimal and non-optimal control algorithms are described and numerical simulations are performed. It is shown that active control can reduce the dynamic response of turbomachines and their foundations under both normal operation, and emergency conditions such as earthquakes.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1991 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Pantelides, Chris P., "Control of Seismic Response of Structures" (1991). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 4.
https://scholarsmine.mst.edu/icrageesd/02icrageesd/session11/4
Included in
Control of Seismic Response of Structures
St. Louis, Missouri
Safety requirements for structures built in seismic regions have led to techniques for absorbing the energy induced to these structures by earthquakes. Passive isolation systems such as base isolators are suitable for low-rise structures but they provide only a partial solution to the problem. This paper presents three active control techniques for reducing the dynamic response of machine supporting foundations. The concept of active control is discussed and various control strategies are presented. The active tendon system (ATS), active mass damper (AMD), and active base control (ABC) mechanisms are examined. Both optimal and non-optimal control algorithms are described and numerical simulations are performed. It is shown that active control can reduce the dynamic response of turbomachines and their foundations under both normal operation, and emergency conditions such as earthquakes.