Location
St. Louis, Missouri
Presentation Date
14 Mar 1991, 2:00 pm - 3:30 pm
Abstract
Slope stability problems involving colluvia on shale bedrock are common in the Greater Cincinnati Area. The behavior of these hillslopes during earthquakes is, however, not known. This gives cause to speculation whether they are vulnerable to earthquake vibrations. In order to verify the response of these slopes to earthquake induced ground motions, representative composite clay shale samples obtained from a typical colluvial hillside in Cincinnati were tested in a cyclic direct shear apparatus which was attached to a load cell from the MTS piston actuator. The samples were initially consolidated under a selected normal pressure and then sheared until residual strength was developed. Pulsating strains were then superimposed simulating seismic excitation and the response was recorded by digital equipment. The results from the laboratory experiments were used in the analysis of "infinite colluvial slopes" for a wide variety of assumed conditions.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1991 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Zoghi, M. and Bodocsi, A., "Seismic Stability of Hillslopes in Greater Cincinnati Area" (1991). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 24.
https://scholarsmine.mst.edu/icrageesd/02icrageesd/session07/24
Included in
Seismic Stability of Hillslopes in Greater Cincinnati Area
St. Louis, Missouri
Slope stability problems involving colluvia on shale bedrock are common in the Greater Cincinnati Area. The behavior of these hillslopes during earthquakes is, however, not known. This gives cause to speculation whether they are vulnerable to earthquake vibrations. In order to verify the response of these slopes to earthquake induced ground motions, representative composite clay shale samples obtained from a typical colluvial hillside in Cincinnati were tested in a cyclic direct shear apparatus which was attached to a load cell from the MTS piston actuator. The samples were initially consolidated under a selected normal pressure and then sheared until residual strength was developed. Pulsating strains were then superimposed simulating seismic excitation and the response was recorded by digital equipment. The results from the laboratory experiments were used in the analysis of "infinite colluvial slopes" for a wide variety of assumed conditions.