Location

St. Louis, Missouri

Presentation Date

12 Mar 1991, 2:30 pm - 3:30 pm

Abstract

This paper presents a laboratory study which aimed at investigating the soil/pile interaction during driving. A short review of past experimental works justifies the need for more consistent data. The test equipment (a rod driven through a sample of soil) is briefly presented and some signals are displayed to illustrate the quality of the measurements. The tests were performed on samples of normally consolidated Kaolinit clay. The analysis of the stress waves propagating in the rod, during driving, provided a good estimation of interaction forces, bar velocities and displacements of the pile model in the sample. Relationships were established between the interaction force, the energy dissipated in the sample of soil, the velocity and the displacement of the rod, and the confining pressure of the sample. Observations and relationships were used (1) to identify the physical phenomena occurring at the soil/pile interface during driving, and (2) to base a law governing this shaft interaction.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1991 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Mar 11th, 12:00 AM Mar 15th, 12:00 AM

Shaft Resistance During Driving in Clay from Laboratory Tests

St. Louis, Missouri

This paper presents a laboratory study which aimed at investigating the soil/pile interaction during driving. A short review of past experimental works justifies the need for more consistent data. The test equipment (a rod driven through a sample of soil) is briefly presented and some signals are displayed to illustrate the quality of the measurements. The tests were performed on samples of normally consolidated Kaolinit clay. The analysis of the stress waves propagating in the rod, during driving, provided a good estimation of interaction forces, bar velocities and displacements of the pile model in the sample. Relationships were established between the interaction force, the energy dissipated in the sample of soil, the velocity and the displacement of the rod, and the confining pressure of the sample. Observations and relationships were used (1) to identify the physical phenomena occurring at the soil/pile interface during driving, and (2) to base a law governing this shaft interaction.