Location
St. Louis, Missouri
Presentation Date
12 Mar 1991, 10:30 am - 12:00 pm
Abstract
The great part of fly ash produced by thermal power plants is either sluiced or filled in disposal areas in China. The dynamic properties of fly ash are important for solving geotechnical problems relating to fly ash mass under dynamic loadings. The high temperature during combustion makes fly ash nonplastic but pozzolanic. The nonplasticity causes the dynamic properties of sluiced and just compacted fly ash to be similar to ones of silts. The pozzolanic action causes obvious aging effect for compacted fly ash, by which an aging time of 180 days may increase maximum shear modulus by 75% to 400% and cyclic strength by 100% to 500%. All of these results are reported and discussed in the paper in detail. Based on the results four correlative equations are presented which could be used to preliminarily evaluate the dynamic properties of fly ashes.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1991 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Yu, Pei-Ji and Qin, Wei-Qin, "Dynamic Properties of Saturated Coal Fly Ash" (1991). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 19.
https://scholarsmine.mst.edu/icrageesd/02icrageesd/session01/19
Included in
Dynamic Properties of Saturated Coal Fly Ash
St. Louis, Missouri
The great part of fly ash produced by thermal power plants is either sluiced or filled in disposal areas in China. The dynamic properties of fly ash are important for solving geotechnical problems relating to fly ash mass under dynamic loadings. The high temperature during combustion makes fly ash nonplastic but pozzolanic. The nonplasticity causes the dynamic properties of sluiced and just compacted fly ash to be similar to ones of silts. The pozzolanic action causes obvious aging effect for compacted fly ash, by which an aging time of 180 days may increase maximum shear modulus by 75% to 400% and cyclic strength by 100% to 500%. All of these results are reported and discussed in the paper in detail. Based on the results four correlative equations are presented which could be used to preliminarily evaluate the dynamic properties of fly ashes.