Location
St. Louis, Missouri
Presentation Date
30 Apr 1981, 1:30 pm - 5:30 pm
Abstract
Assessment of dam embankment deformation by various methods such as those proposed by Newmark, Ambraseys and Seed was reviewed herewith. A simple method based on dynamic response spectrum analyses by step-by-step integration technique is proposed for independent permanent deformation evaluation. The proposed method assumes that failure occurs on a well-defined slip surface and that the material behaves elastically at stress level below failure but develops a perfectly plastic behavior above the yield acceleration. The results of the proposed method were compared with those obtained from other method for actual examples. Favorable agreement on the analytical results was achieved.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
1st International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1981 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Shieh, William Y. J. and Huang, Rodney J., "Permanent Deformation of Earth Dams Under Earthquakes" (1981). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 12.
https://scholarsmine.mst.edu/icrageesd/01icrageesd/session07/12
Included in
Permanent Deformation of Earth Dams Under Earthquakes
St. Louis, Missouri
Assessment of dam embankment deformation by various methods such as those proposed by Newmark, Ambraseys and Seed was reviewed herewith. A simple method based on dynamic response spectrum analyses by step-by-step integration technique is proposed for independent permanent deformation evaluation. The proposed method assumes that failure occurs on a well-defined slip surface and that the material behaves elastically at stress level below failure but develops a perfectly plastic behavior above the yield acceleration. The results of the proposed method were compared with those obtained from other method for actual examples. Favorable agreement on the analytical results was achieved.