Location
St. Louis, Missouri
Presentation Date
29 Apr 1981, 1:30 pm - 5:00 pm
Abstract
In this investigation, a mathematical hybrid model developed previously is employed to study soil-structure interaction of embedded structure. In the analysis, the near field including the embedded structure and its surrounding foundation soil is modelled with a conventional finite element mesh, and the far field is modelled as a semi-infinite medium with a hemi-spherical pit. The impedance functions at the nodes around the special element, which have been determined analytically, can represent the behavior of outgoing propagation of waves. A concept of superposition is proposed to analyze the response of an embedded structure excited by an incoming SH-wave. The governing equations of the whole system will be formulated by enforcing the compatibility and equilibrium conditions at the nodes of the finite mesh. Basing on these equations, the response of the embedded structure and its surrounding ground can be determined accordingly. Numerical results have been obtained, and correlations with available solutions using continuum approaches are studied. The effects of the embedment on the responses are also shown and discussed.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
1st International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1981 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Yeh, G. S. and Lin, T. W., "Dynamic Response of an Embedded Structure Generated By a SH-Wave" (1981). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 15.
https://scholarsmine.mst.edu/icrageesd/01icrageesd/session04b/15
Included in
Dynamic Response of an Embedded Structure Generated By a SH-Wave
St. Louis, Missouri
In this investigation, a mathematical hybrid model developed previously is employed to study soil-structure interaction of embedded structure. In the analysis, the near field including the embedded structure and its surrounding foundation soil is modelled with a conventional finite element mesh, and the far field is modelled as a semi-infinite medium with a hemi-spherical pit. The impedance functions at the nodes around the special element, which have been determined analytically, can represent the behavior of outgoing propagation of waves. A concept of superposition is proposed to analyze the response of an embedded structure excited by an incoming SH-wave. The governing equations of the whole system will be formulated by enforcing the compatibility and equilibrium conditions at the nodes of the finite mesh. Basing on these equations, the response of the embedded structure and its surrounding ground can be determined accordingly. Numerical results have been obtained, and correlations with available solutions using continuum approaches are studied. The effects of the embedment on the responses are also shown and discussed.