Location

St. Louis, Missouri

Presentation Date

28 Apr 1981, 9:00 am - 12:30 pm

Abstract

Undrained cyclic triaxial tests were performed on undisturbed samples of natural soil deposits in order to investigate some of the factors affecting its liquefaction characteristics. It was shown that when the cyclic deviator stress is normalized with respect to major principal effective stress the number of cycles to liquefaction is not affected by sample size, consolidation stress, anisotropic consolidation, and grain size and density variations. However, liquefaction resistance was markedly increased by increasing over-consolidation ratio and aging. Also, sample disturbance of loose soils results in an increase, or unconservative measurement, of liquefaction resistance.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

1st International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1981 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Apr 26th, 12:00 AM May 3rd, 12:00 AM

Liquefaction Characteristics of Undisturbed Soils

St. Louis, Missouri

Undrained cyclic triaxial tests were performed on undisturbed samples of natural soil deposits in order to investigate some of the factors affecting its liquefaction characteristics. It was shown that when the cyclic deviator stress is normalized with respect to major principal effective stress the number of cycles to liquefaction is not affected by sample size, consolidation stress, anisotropic consolidation, and grain size and density variations. However, liquefaction resistance was markedly increased by increasing over-consolidation ratio and aging. Also, sample disturbance of loose soils results in an increase, or unconservative measurement, of liquefaction resistance.