Location

St. Louis, Missouri

Presentation Date

27 Apr 1981, 10:30 am - 1:00 pm

Abstract

The investigation considered effects of on-going or previous drained creep on the low amplitude dynamic shear modulus of normally consolidated artificial and natural clay soils. Resonant column tests using the Hardin and Hall devices determined the low-amplitude shear modulus. Results indicated that the strain-rate of on-going creep determined the kind of effect on shear modulus. High strain-rates produced reduced values whereas low strain-rates slightly increased values of modulus, compared to the no-creep values. Previous creep produced higher values of modulus, when the clay was tested under after-creep isotropic confinement. The rate of secondary increase of shear modulus was not affected by the drained creep action. The behaviors of the remolded kaolinite clay and the undisturbed natural clay were remarkably similar.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

1st International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1981 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Apr 26th, 12:00 AM May 3rd, 12:00 AM

Creep Effects on Low-Amplitude Modulus of Clays

St. Louis, Missouri

The investigation considered effects of on-going or previous drained creep on the low amplitude dynamic shear modulus of normally consolidated artificial and natural clay soils. Resonant column tests using the Hardin and Hall devices determined the low-amplitude shear modulus. Results indicated that the strain-rate of on-going creep determined the kind of effect on shear modulus. High strain-rates produced reduced values whereas low strain-rates slightly increased values of modulus, compared to the no-creep values. Previous creep produced higher values of modulus, when the clay was tested under after-creep isotropic confinement. The rate of secondary increase of shear modulus was not affected by the drained creep action. The behaviors of the remolded kaolinite clay and the undisturbed natural clay were remarkably similar.