Location
Chicago, Illinois
Date
02 May 2013, 4:00 pm - 6:00 pm
Abstract
This paper presents the design and construction of compaction grouting work completed for a tank replacement project in Portland, Oregon. The project site is located along the west bank of the Willamette River. The subsurface soils at the project site were determined to be highly susceptible to soil liquefaction and lateral spreading under a design earthquake event per the building code. Compaction grouting was designed and constructed to strengthen the foundation soils supporting the new steel tank that is 115 feet in diameter and 40 feet in height. The design of the compaction grouting was completed using the design guidelines outlined in ASCE/G-I Standard 53-10. Detailed quality assurance/quality control processes were implemented during grouting operations to account for the variability in soil conditions being grouted. Real time monitoring was also completed to evaluate the ground movement induced by the grouting process and its impact to adjacent structures and critical utilities. Pre- and post-grouting CPTs were completed to verify that the intended ground densification was achieved. A hydrostatic test was also completed with the tank filled with water. The tank foundation settlement under the hydrostatic test was found to range between ¼ to ¾ inches and met the acceptance criteria per API-650 and API-653 Standards.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
7th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2013 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Chin, King H.; Disla, Heidi P.; and Cote, Bob, "Design and Construction of Compaction Grouting for Foundation Soil Improvements" (2013). International Conference on Case Histories in Geotechnical Engineering. 12.
https://scholarsmine.mst.edu/icchge/7icchge/session_06/12
Design and Construction of Compaction Grouting for Foundation Soil Improvements
Chicago, Illinois
This paper presents the design and construction of compaction grouting work completed for a tank replacement project in Portland, Oregon. The project site is located along the west bank of the Willamette River. The subsurface soils at the project site were determined to be highly susceptible to soil liquefaction and lateral spreading under a design earthquake event per the building code. Compaction grouting was designed and constructed to strengthen the foundation soils supporting the new steel tank that is 115 feet in diameter and 40 feet in height. The design of the compaction grouting was completed using the design guidelines outlined in ASCE/G-I Standard 53-10. Detailed quality assurance/quality control processes were implemented during grouting operations to account for the variability in soil conditions being grouted. Real time monitoring was also completed to evaluate the ground movement induced by the grouting process and its impact to adjacent structures and critical utilities. Pre- and post-grouting CPTs were completed to verify that the intended ground densification was achieved. A hydrostatic test was also completed with the tank filled with water. The tank foundation settlement under the hydrostatic test was found to range between ¼ to ¾ inches and met the acceptance criteria per API-650 and API-653 Standards.