Location
Chicago, Illinois
Date
02 May 2013, 8:00 am - 8:45 am
Abstract
The talk presents the essential requirements for the design of foundations for the world’s tallest buildings from a geotechnical perspective, discusses briefly the basic foundation types and several key principles to remember, including the need for close structural engineer and geotechnical engineer cooperation. The special in-situ testing and load testing techniques commonly used are also presented. International case histories where performance has been monitored are used to illustrate some of the basic points as well as to compare prediction with performance. As an additional feature, the experience of gradually increasing allowable bearing pressures in a given geology over a sufficient time span to observe performance is also presented using Chicago high-rise experience.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
7th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2013 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Baker, Clyde N. and Kiefer, Tony A., "The Design of Foundations for the World’s Tallest Buildings" (2013). International Conference on Case Histories in Geotechnical Engineering. 1.
https://scholarsmine.mst.edu/icchge/7icchge/session16/1
The Design of Foundations for the World’s Tallest Buildings
Chicago, Illinois
The talk presents the essential requirements for the design of foundations for the world’s tallest buildings from a geotechnical perspective, discusses briefly the basic foundation types and several key principles to remember, including the need for close structural engineer and geotechnical engineer cooperation. The special in-situ testing and load testing techniques commonly used are also presented. International case histories where performance has been monitored are used to illustrate some of the basic points as well as to compare prediction with performance. As an additional feature, the experience of gradually increasing allowable bearing pressures in a given geology over a sufficient time span to observe performance is also presented using Chicago high-rise experience.