Location
Chicago, Illinois
Date
02 May 2013, 4:00 pm - 6:00 pm
Abstract
After 1990s' earthquakes in Japan, lateral flow of liquefiable slopes became a serious concern of engineers. Espisally Kobe earthquake (1995) in which high subsidence of river levee as a result of liquefied sand lateral flow was observed, become a turning point in geotechnical engineering approach in dealing with this phenomena. From that time many different kinds of mitigation measures for preventing or at least controlling the extent of lateral flow have been proposed. Improving soil by deep mixing columns is one of the common methods of soil improvement that can also be used for controlling the consequences of liquefied sand flow. For analyzing the factors affecting the efficiency of this method, several shaking table tests have been done. This article is showing the effects of studied factors including columns pattern the length and improvement ratio. Moreover the magnitude of flow inside and outside of improved area are scrutinized. Finally, based on experimental observations, behavior of liquefied sand in existence of deep mixed soil is modeled numerically.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
7th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2013 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Rasouli, Rouzbeh; Takahashi, Naoki; Derakhshani, Ali; Yamada, Suguru; Takaoka, Yuji; and Towhata, Ikuo, "Experimental Study on Mitigation of Liquefaction-Induced Lateral Displacement Deep Soil Mixing" (2013). International Conference on Case Histories in Geotechnical Engineering. 38.
https://scholarsmine.mst.edu/icchge/7icchge/session03/38
Experimental Study on Mitigation of Liquefaction-Induced Lateral Displacement Deep Soil Mixing
Chicago, Illinois
After 1990s' earthquakes in Japan, lateral flow of liquefiable slopes became a serious concern of engineers. Espisally Kobe earthquake (1995) in which high subsidence of river levee as a result of liquefied sand lateral flow was observed, become a turning point in geotechnical engineering approach in dealing with this phenomena. From that time many different kinds of mitigation measures for preventing or at least controlling the extent of lateral flow have been proposed. Improving soil by deep mixing columns is one of the common methods of soil improvement that can also be used for controlling the consequences of liquefied sand flow. For analyzing the factors affecting the efficiency of this method, several shaking table tests have been done. This article is showing the effects of studied factors including columns pattern the length and improvement ratio. Moreover the magnitude of flow inside and outside of improved area are scrutinized. Finally, based on experimental observations, behavior of liquefied sand in existence of deep mixed soil is modeled numerically.