Location
Chicago, Illinois
Date
02 May 2013, 2:00 pm - 3:30 pm
Abstract
The lateral forced vibration test was carried out on driven cast in-situ concrete vertical piles of 500 mm diameter in a petrochemical complex site in Paradip, India. The site predominantly consists of silty sand for the top 3 m with shear wave velocity of 200 m/s and it is followed by clayey sand with shear velocity increases from 415 m/s to 460 m/s over pile termination depth of about 17 m . The piles were subjected to a sinusoidal lateral force with magnitude of 0.3 kN to 9.5 kN in the frequency range of 5 to 30 Hz. A 3D finite element analysis was carried out on vertical piles using ABAQUS and its results are validated with the field test results. Finite element analysis was extended to batter piles (10˚and 20˚) subjected to lateral dynamic load and it was found that the peak displacement amplitude of batter piles is 15 to 25% less than the same that of vertical piles indicating better performance of batter piles under lateral dynamic loading.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
7th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
Missouri University of Science and Technology
Document Version
Final Version
Rights
© 2013 Missouri University of Science and Technology, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Subramanian, R. M. and Boominathan, A., "Dynamic Response of Vertical and Batter Piles" (2013). International Conference on Case Histories in Geotechnical Engineering. 13.
https://scholarsmine.mst.edu/icchge/7icchge/session02/13
Dynamic Response of Vertical and Batter Piles
Chicago, Illinois
The lateral forced vibration test was carried out on driven cast in-situ concrete vertical piles of 500 mm diameter in a petrochemical complex site in Paradip, India. The site predominantly consists of silty sand for the top 3 m with shear wave velocity of 200 m/s and it is followed by clayey sand with shear velocity increases from 415 m/s to 460 m/s over pile termination depth of about 17 m . The piles were subjected to a sinusoidal lateral force with magnitude of 0.3 kN to 9.5 kN in the frequency range of 5 to 30 Hz. A 3D finite element analysis was carried out on vertical piles using ABAQUS and its results are validated with the field test results. Finite element analysis was extended to batter piles (10˚and 20˚) subjected to lateral dynamic load and it was found that the peak displacement amplitude of batter piles is 15 to 25% less than the same that of vertical piles indicating better performance of batter piles under lateral dynamic loading.