Alternative Title
Paper No. 6.05
Location
St. Louis, Missouri
Date
11 Mar 1998, 4:30 pm - 6:30 pm
Abstract
Discharges up to 60,000 cfs that lasted 21 days caused extensive erosion of the unlined spillway chute excavated in alternating layers of limestone and shale. An empirical model allowed to evaluate the extent of erosion anticipated for future events. Parametric calculations showed that relatively low discharges a long period of time are critical for the induced damage. It was determined that the spillway can safely pass the design discharge if weathering of rock exposed by erosion is prevented. Accordingly, the interim repair was designed to protect the rock units, especially the critical limestone layers, from weathering. Although it is expected much of the repair to be eroded during future spillway flows, it will ensure the spillway can safely pass the next discharge event.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1998 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Mathews, David; Perlea, Vlad G.; Walberg, Francke C.; and Anderson, Douglas R., "Erosion and Repair of Unlined Spillway Chute Excavated in Rock" (1998). International Conference on Case Histories in Geotechnical Engineering. 6.
https://scholarsmine.mst.edu/icchge/4icchge/4icchge-session06/6
Erosion and Repair of Unlined Spillway Chute Excavated in Rock
St. Louis, Missouri
Discharges up to 60,000 cfs that lasted 21 days caused extensive erosion of the unlined spillway chute excavated in alternating layers of limestone and shale. An empirical model allowed to evaluate the extent of erosion anticipated for future events. Parametric calculations showed that relatively low discharges a long period of time are critical for the induced damage. It was determined that the spillway can safely pass the design discharge if weathering of rock exposed by erosion is prevented. Accordingly, the interim repair was designed to protect the rock units, especially the critical limestone layers, from weathering. Although it is expected much of the repair to be eroded during future spillway flows, it will ensure the spillway can safely pass the next discharge event.