Alternative Title

Paper No. 3.24

Location

St. Louis, Missouri

Date

11 Mar 1998, 1:30 pm - 4:00 pm

Abstract

Recent records of seismic site response have documented a salient liquefaction-induced cyclic shear-deformation mechanism. During liquefaction, these ground acceleration records have suggested a possible strong influence of soil-skeleton dilation at large cyclic shear strain excursions. Such phases of dilation can result in significant regain in shear stiffness and strength, leading to: i) associated instances of pore-pressure reduction. ii) appearance of spikes in lateral acceleration records (as a direct consequence of the increased shear resistance), and iii) a strong restraining effect on the magnitude of cyclic and accumulated permanent shear strains. As presented in this study, these response effects are also thoroughly documented by a large body of experimental research (mainly employing clean sands and dean non-plastic silts), including centrifuge experiments, shake-table tests, and cyclic laboratory sample tests. A number of efforts to computationally simulate this aspect of soil behavior are presented. In addition, the framework for a newly developed computational model is discussed.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

4th Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1998 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Mar 8th, 12:00 AM Mar 15th, 12:00 AM

Soil Dilation and Shear Deformations During Liquefaction

St. Louis, Missouri

Recent records of seismic site response have documented a salient liquefaction-induced cyclic shear-deformation mechanism. During liquefaction, these ground acceleration records have suggested a possible strong influence of soil-skeleton dilation at large cyclic shear strain excursions. Such phases of dilation can result in significant regain in shear stiffness and strength, leading to: i) associated instances of pore-pressure reduction. ii) appearance of spikes in lateral acceleration records (as a direct consequence of the increased shear resistance), and iii) a strong restraining effect on the magnitude of cyclic and accumulated permanent shear strains. As presented in this study, these response effects are also thoroughly documented by a large body of experimental research (mainly employing clean sands and dean non-plastic silts), including centrifuge experiments, shake-table tests, and cyclic laboratory sample tests. A number of efforts to computationally simulate this aspect of soil behavior are presented. In addition, the framework for a newly developed computational model is discussed.