Location
St. Louis, Missouri
Date
03 Jun 1993, 2:00 pm - 4:00 pm
Abstract
The 1987 Whittier Narrows earthquake (ML = 5.9) shook two dams, the Puddingstone and Cogswell dams, which were instrumented as part of the California Strong Motion Instrumentation Program (CSMIP). The resulting recorded accelerograms provided a valuable opportunity to investigate and evaluate the accuracy and reliability of conventional geotechnical procedures for evaluation of dynamic response characteristics of earth and rockfill dams. This paper presents the results of these studies, which provide insight regarding current techniques for dynamic soil property evaluation and the applicability of one- and two-dimensional analytical procedures to evaluation of the dynamic response of these types of dams.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
3rd Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1993 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Boulanger, R. W.; Bray, J. D.; and Seed, R. B., "Response of Two Dams in the 1987 Whittier Narrows Earthquake" (1993). International Conference on Case Histories in Geotechnical Engineering. 16.
https://scholarsmine.mst.edu/icchge/3icchge/3icchge-session03/16
Response of Two Dams in the 1987 Whittier Narrows Earthquake
St. Louis, Missouri
The 1987 Whittier Narrows earthquake (ML = 5.9) shook two dams, the Puddingstone and Cogswell dams, which were instrumented as part of the California Strong Motion Instrumentation Program (CSMIP). The resulting recorded accelerograms provided a valuable opportunity to investigate and evaluate the accuracy and reliability of conventional geotechnical procedures for evaluation of dynamic response characteristics of earth and rockfill dams. This paper presents the results of these studies, which provide insight regarding current techniques for dynamic soil property evaluation and the applicability of one- and two-dimensional analytical procedures to evaluation of the dynamic response of these types of dams.