Date

01 Jun 1988, 1:00 pm - 5:00 pm

Abstract

A soil bentonite slurry wall was designed for an NPL site to stop further migration of chemicals in a complex aquifer system, and to facilitate the removal of possible chemical sources from saturated zones beneath the site. Pumping from within the slurry wall will maintain inward and upward hydraulic gradients and thus stop further lateral or vertical migration of chemicals from the contained area. The slurry wall was constructed under an exceptionally detailed Quality Assurance; Quality Control review by the Contractor and two independent consulting firms. Ground movements, vibration levels and opacity of dust produced during construction were monitored for compliance with design specifications. It was made a condition of the contract that no hazardous material could leave the site. Federal regulations required all persons involved in site work to have health and safety training. Careful planning and close liaison between the Owner, Engineer and Contractor has enabled the slurry wall to be constructed in a business park environment around an operating manufacturing facility without disruption to production.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

2nd Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1988 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Jun 1st, 12:00 AM

Design and Construction of a Soil Bentonite Slurry Wall Around an Operating Facility Superfund Site

A soil bentonite slurry wall was designed for an NPL site to stop further migration of chemicals in a complex aquifer system, and to facilitate the removal of possible chemical sources from saturated zones beneath the site. Pumping from within the slurry wall will maintain inward and upward hydraulic gradients and thus stop further lateral or vertical migration of chemicals from the contained area. The slurry wall was constructed under an exceptionally detailed Quality Assurance; Quality Control review by the Contractor and two independent consulting firms. Ground movements, vibration levels and opacity of dust produced during construction were monitored for compliance with design specifications. It was made a condition of the contract that no hazardous material could leave the site. Federal regulations required all persons involved in site work to have health and safety training. Careful planning and close liaison between the Owner, Engineer and Contractor has enabled the slurry wall to be constructed in a business park environment around an operating manufacturing facility without disruption to production.