Date
11 May 1984, 8:00 am - 10:30 am
Abstract
This paper describes the ground movements measured at a Test Section during construction of twin rapid transit tunnels in Cambridge, Massachusetts. The Test Section was located in an area of rock, soft ground and mixed face tunneling, with the alignment of the twin tunnels approximately 100 feet below ground surface. Overburden soils consist primarily of a very dense, saturated glacial till containing cobbles and boulders, with a weakly metamorphosed, fractured shale bedrock below. Instrumentation at the Test Section was installed in three cross-sections: one with the tunnel headings entirely in rock, a second with the tunnel headings in soft ground, and a third in a mixed face area. The field measurements are analyzed to show the effects of ground losses at the tunnel headings vs. distance away from headings, the effects of single vs. twin tunnel construction, and the effects of mixed face vs. rock and soft ground tunneling on ground movements.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
1st Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1984 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Edgers, L.; Thompson, D. E.; Mooney, J. S.; and Young, L. W. Jr., "Movements Around Transit Tunnels in Mixed Ground" (1984). International Conference on Case Histories in Geotechnical Engineering. 33.
https://scholarsmine.mst.edu/icchge/1icchge/1icchge-theme9/33
Movements Around Transit Tunnels in Mixed Ground
This paper describes the ground movements measured at a Test Section during construction of twin rapid transit tunnels in Cambridge, Massachusetts. The Test Section was located in an area of rock, soft ground and mixed face tunneling, with the alignment of the twin tunnels approximately 100 feet below ground surface. Overburden soils consist primarily of a very dense, saturated glacial till containing cobbles and boulders, with a weakly metamorphosed, fractured shale bedrock below. Instrumentation at the Test Section was installed in three cross-sections: one with the tunnel headings entirely in rock, a second with the tunnel headings in soft ground, and a third in a mixed face area. The field measurements are analyzed to show the effects of ground losses at the tunnel headings vs. distance away from headings, the effects of single vs. twin tunnel construction, and the effects of mixed face vs. rock and soft ground tunneling on ground movements.