Date

09 May 1984, 9:00 am - 12:00 pm

Abstract

Presented is a simplified procedure for performing the dynamic effective stress analysis. An equivalent linear method is applied to the procedure. It is assumed, in this method, that the variations of the shear modulus and damping factor due to strain level and effective stress are independent one another. That is, firstly the total stress analysis is done in order to obtain the effective strain. Then the effective stress analysis is carried out and the moduli are varied due to the variation of the effective stress only. The accuracy of the result is checked by comparing it with that of nonlinear solution.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

1st Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1984 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
May 6th, 12:00 AM

Seismic Response and Liquefaction Analysis by an Approximate Method

Presented is a simplified procedure for performing the dynamic effective stress analysis. An equivalent linear method is applied to the procedure. It is assumed, in this method, that the variations of the shear modulus and damping factor due to strain level and effective stress are independent one another. That is, firstly the total stress analysis is done in order to obtain the effective strain. Then the effective stress analysis is carried out and the moduli are varied due to the variation of the effective stress only. The accuracy of the result is checked by comparing it with that of nonlinear solution.