Date
07 May 1984, 11:30 am - 6:00 pm
Abstract
An 18-story reinforced concrete building under construction in South Florida reached 16th floor level when significant differential settlement presented an unanticipated foundation problem. The foundation consisted of a structural mat supported by 14-in. concrete piles 24 to 75 ft long. Surprisingly, the longest piles were within the area of greatest settlement. Investigation revealed a previously undisclosed semi-cavernous zone from 120 to 175 ft below ground surface, and level surveys using deep benchmarks confirmed that zone to be the source of movement. Injection grouting first accelerated and then controlled the settlement, allowing the building to be completed on schedule. Temperature probes and weekly precise level surveys were key control devices contributing to the correction of the problem.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
1st Conference of the International Conference on Case Histories in Geotechnical Engineering
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 1984 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
McClelland, B. and Ulrich, E. J., "Grouting to Control Deep Foundation Settlement" (1984). International Conference on Case Histories in Geotechnical Engineering. 29.
https://scholarsmine.mst.edu/icchge/1icchge/1icchge-theme1/29
Grouting to Control Deep Foundation Settlement
An 18-story reinforced concrete building under construction in South Florida reached 16th floor level when significant differential settlement presented an unanticipated foundation problem. The foundation consisted of a structural mat supported by 14-in. concrete piles 24 to 75 ft long. Surprisingly, the longest piles were within the area of greatest settlement. Investigation revealed a previously undisclosed semi-cavernous zone from 120 to 175 ft below ground surface, and level surveys using deep benchmarks confirmed that zone to be the source of movement. Injection grouting first accelerated and then controlled the settlement, allowing the building to be completed on schedule. Temperature probes and weekly precise level surveys were key control devices contributing to the correction of the problem.