An Advanced Selection Tool for the Application of In-Situ Polymer Gels for Undiagnosed Injection Wells
Abstract
Conformance improvement by polymer gels continues to gain momentum in the field of water management in mature oilfields. A key component for a successful treatment is the identification of the most appropriate gel technology for a targeted reservoir. Advanced approaches provide efficient screening and ranking tools; however, to the best of our knowledge, no such approaches have been developed for polymer gels so far. In this study, we utilized a machine-learning technique to develop an advanced selection methodology for the application of polymer gels in injection wells. Historical data of four in-situ gel systems including bulk gels, high temperature bulk gels, colloidal dispersion gels, and weak gels were used to train logistic regression models. Data sets of 19 property or parameter were tested for potential outliers, the missing values were imputed, and some variables were categorized in order to treat the data gaps. To identify the most discriminating variables, the univariate entropy R2, stepwise regression, and area under ROC curve (AUC) heuristic technique were employed. The candidate variables were then modified according to some considerations like the univariate logistic probability pattern. To consider the regional tendencies in application of polymer gels, we developed three probabilistic models that include different number of treating technologies. Furthermore, to meet the new developments in the application of some gel systems, we constructed a variant model for each classifier in which the treatment timing indicator (water cut) was omitted. Results show that logistic classification models and their variants correctly predict the proper gel technology in more than 85% of the projects in the training and validation samples with a minimum AUC of 0.9375. We also used a prediction profiler to visually monitor performances of the classifiers and certain tendencies were identified by the investigation of the mispredicted projects. The novelty of the new methodology is its capability to predict the most applicable gel technology for undiagnosed injection wells.
Recommended Citation
M. N. Aldhaheri et al., "An Advanced Selection Tool for the Application of In-Situ Polymer Gels for Undiagnosed Injection Wells," Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (2016, Dammam, Saudi Arabia), Society of Petroleum Engineers (SPE), Apr 2016.
The definitive version is available at https://doi.org/10.2118/182813-MS
Meeting Name
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (2016: Apr. 25-28, Dammam, Saudia Arabia)
Department(s)
Geosciences and Geological and Petroleum Engineering
Keywords and Phrases
Artificial Intelligence; Forecasting; Heuristic Methods; Learning Systems; Oil Fields; Petroleum Engineering; Petroleum Reservoir Evaluation; Polymers; Regression Analysis; Water Management; Water Treatment; Wells; Application Of Polymers; Area Under Roc Curve (AUC); Classification Models; Colloidal Dispersion; Heuristic Techniques; Logistic Regression Models; Machine Learning Techniques; Probabilistic Models; Gels
International Standard Book Number (ISBN)
978-1613994825
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2016 Society of Petroleum Engineers (SPE), All rights reserved.
Publication Date
01 Apr 2016