Abstract
In the present study, we use broadband seismic data recorded by 190 stations of the EarthScope program's Transportable Array to construct a 3-D shear wave velocity model for the upper 180 km using a non-linear Bayesian Monte-Carlo joint inversion of receiver functions (RFs) and Rayleigh wave dispersion curves. Ambient noise and teleseismic data are used for obtaining Rayleigh wave phase velocity dispersion curves. A resonance removal filtering technique is applied to the RFs contaminated by reverberations from the thick sedimentary layers that cover most of the region. Our observations of the higher crustal shear velocities (∼3.40 km/s) beneath the Sabine Block (SB), along with the estimated relatively thicker crust (∼34.0 km) and lower crustal Vp/Vs estimates (∼1.80) in comparison with the rest of the Gulf Coastal Plain (GCP) (∼3.10 km/s for crustal shear velocities, ∼29.0 km for crustal thickness, and ∼1.90 for crustal Vp/Vs estimates), indicating that this crustal block has different crustal properties from the surrounding coastal plain regions. The southern Ouachita Mountains have a thin crust (∼30.0 km) and low mean crustal Vp/Vs value (∼1.73), suggesting that lower crustal delamination has occurred in this region. Low velocities in the upper mantle beneath most of the GCP are interpreted as a combined result of thin lithosphere, higher-than-normal temperatures, and possibly compositional variations.
Recommended Citation
T. Wang et al., "Lithospheric Evolution of the South-Central United States Constrained by Joint Inversion of Receiver Functions and Surface Wave Dispersion," Journal of Geophysical Research: Solid Earth, vol. 129, no. 6, article no. e2023JB026874, American Geophysical Union; Wiley, Jun 2024.
The definitive version is available at https://doi.org/10.1029/2023JB026874
Department(s)
Geosciences and Geological and Petroleum Engineering
Publication Status
Full Access
International Standard Serial Number (ISSN)
2169-9356; 2169-9313
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2024 American Geophysical Union; Wiley, All rights reserved.
Publication Date
01 Jun 2024
Comments
National Science Foundation, Grant EAR‐1851048