Abstract

Landslide damming is a widespread phenomenon worldwide and significantly affects the evolution of fluvial landscapes. However, it is rarely witnessed from an antiquities perspective, and the case for observing their internal structure is challenging. We attempt to visualize the subsurface structure and understand the likely breaching mechanism of the late Pleistocene Diexi gigantic landslide dam (longevity of ~ 10 ka), using electrical resistivity tomography (ERT) method. Eight ERT measurements on the Diexi dam body revealed high resistivity zones near the periphery and lower resistivity zones in the middle portion of the profiles. Geomorphological mapping based on the LiDAR data determined the boundary of the landslide. Field investigation found that zones of low resistivity were connected to a ditched gully. Because breaching such an enormous lake with a total area of 21.4 km2 dammed by a gigantic landslide body with intact rocks was not likely by overtopping alone. The authors postulate that differential seepage of water from the gullies through the landslide debris could have accelerated the undercutting erosion of the otherwise stable Diexi dam. Utilizing geophysical techniques, along with field geomorphology works, can provide valuable information on the evolution of a gigantic paleo-landslide dam, which has real implications for the stability evaluation and forecast of future landslide dams.

Department(s)

Geosciences and Geological and Petroleum Engineering

Keywords and Phrases

Breaching mechanism; Diexi gigantic landslide; Electrical resistivity tomography (ERT); Landslide dam

International Standard Serial Number (ISSN)

1612-5118; 1612-510X

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Springer, All rights reserved.

Publication Date

01 Jan 2023

Share

 
COinS