Abstract

Effective monitoring of groundwater withdrawals is necessary to help mitigate the negative impacts of aquifer depletion. In this study, we develop a holistic approach that combines water balance components with a machine learning model to estimate groundwater withdrawals. We use both multitemporal satellite and modeled data from sensors that measure different components of the water balance and land use at varying spatial and temporal resolutions. These remote sensing products include evapotranspiration, precipitation, and land cover. Due to the inherent complexity of integrating these data sets and subsequently relating them to groundwater withdrawals using physical models, we apply random forests -- a state of the art machine learning algorithm -- to overcome such limitations. Here, we predict groundwater withdrawals per unit area over a highly monitored portion of the High Plains aquifer in the central United States at 5 km resolution for the Years 2002-2019. Our modeled withdrawals had high accuracy on both training and testing data sets (R2 ≈ 0.99 and R2 ≈ 0.93, respectively) during leave-one-out (year) cross validation with low mean absolute error (MAE) ≈ 4.31 mm and root-mean-square error (RMSE) ≈ 13.50 mm for the year 2014. Moreover, we found that even for the extreme drought year of 2012, we have a satisfactory test score (R2 ≈ 0.84) with MAE ≈ 9.72 mm and RMSE ≈ 24.17 mm. Therefore, the proposed machine learning approach should be applicable to similar regions for proactive water management practices.

Department(s)

Geosciences and Geological and Petroleum Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

Estimation and forecasting; Geospatial; Groundwater hydrology; Machine learning; Remote sensing; Time series analysis

International Standard Serial Number (ISSN)

0043-1397; 1944-7973

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2020 American Geophysical Union, All rights reserved.

Publication Date

01 Nov 2020

Share

 
COinS