Magnitudes of Induced Earthquakes in Low-Stress Environments
Abstract
An outstanding question for predicting hazard from induced seismicity is what controls the size distribution of events. For injection-induced seismicity, ruptures may be confined to the region of perturbed stress and pore pressure when the background ratio of shear to normal stress is low. We explore the distribution of earthquake magnitudes under the restrictive assumption that no events occur outside the stress-perturbed region around the injector. We derive mathematical expressions for the instantaneous distribution of earthquake magnitudes given a volume-averaged seismicity rate, growth rate of the perturbed region, and background fault-size distribution, assuming the latter follows a truncated Gutenberg-Richter distribution (GRD). The distribution of magnitudes can be written as the sum of three terms: faults fully inside the region, partially inside, and faults fully covering the region. The predicted frequency-magnitude distribution shows time-dependent changes relative to the GRD. These depend on the ratio of largest fault size to the (time-dependent) radius of the perturbed region and the b-value. The largest magnitude event is the smaller of either the perturbed region or largest fault size present, and in some simulations is observed post shut-in due to the high rate of events just after shut-in coupled with the continued growth of the perturbed region.
Recommended Citation
J. Maurer and P. Segall, "Magnitudes of Induced Earthquakes in Low-Stress Environments," Bulletin of the Seismological Society of America, vol. 108, no. 3, pp. 1087 - 1106, Seismological Society of America, Jun 2018.
The definitive version is available at https://doi.org/10.1785/0120170295
Department(s)
Geosciences and Geological and Petroleum Engineering
Keywords and Phrases
Faulting; Induced Seismicity; Size Distribution, Background Ratio; Earthquake Magnitudes; Low Stress; Magnitude Distribution; Mathematical Expressions; Normal Stress; Time Dependent; Time-Dependent Changes, Earthquakes, Earthquake Magnitude; Earthquake Rupture; Hazard Assessment; Seismicity; Stress
International Standard Serial Number (ISSN)
0037-1106
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 Seismological Society of America, All rights reserved.
Publication Date
01 Jun 2018
Comments
This work was partially funded by the Stanford Center for Induced and Triggered Seismicity at Stanford University.