Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS
Abstract
Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.
Recommended Citation
R. Funderburg et al., "Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS," Journal of the American Society for Mass Spectrometry, vol. 28, no. 11, pp. 2344 - 2351, Springer Verlag, Nov 2017.
The definitive version is available at https://doi.org/10.1007/s13361-017-1745-5
Department(s)
Geosciences and Geological and Petroleum Engineering
Keywords and Phrases
Laser ablation; Magnetic sector LA-ICP-MS; Precision; Rare earth elements
International Standard Serial Number (ISSN)
1044-0305; 1879-1123
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2017 Springer Verlag, All rights reserved.
Publication Date
01 Nov 2017
Comments
Funding for this study was provided through the NASA Science Innovation Fund and Center for Research and Exploration in Space Science and Technology (CRESST).