Abstract
An explosively formed projectile (EFP) is known for its ability to penetrate vehicle armor effectively. Understanding how an EFP’s physical parameters affect its performance is crucial to development of armor capable of defeating such devices. The present study uses two flyer plate radii of curvature to identify the experimental effects of the flyer plate’s radius of curvature on the measured projectile velocity, depth of penetration, and projectile shape. The Gurney equation is an algebraic relationship for estimating the velocity imparted to a metal plate in contact with detonating explosives. The authors of this research used a form of the Gurney equation to calculate the theoretical flyer plate velocity. Two EFP designs that have different flyer plate radii of curvature, but the same physical parameters and the same flyer-weight to charge-weight ratio should theoretically have the same velocity. Tests indicated that the flyer plate’s radius of curvature does not affect the projectile’s velocity and that a flat flyer plate negatively affects projectile penetration and formation.
Recommended Citation
P. R. Mulligan et al., "The Effects of the Flyer Plate's Radius of Curvature on the Performance of an Explosively Formed Projectile," AIP Conference Proceedings, vol. 1426, pp. 1023 - 1026, AIP Publishing, Jul 2012.
The definitive version is available at https://doi.org/10.1063/1.3686452
Meeting Name
17th Biennial Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2011 APS SCCM (2011: Jun. 26-Jul. 1, Chicago, IL)
Department(s)
Geosciences and Geological and Petroleum Engineering
Second Department
Mining Engineering
Keywords and Phrases
Explosively Formed Projectile; EFP; Performance; Radius
International Standard Book Number (ISBN)
978-0-7354-1006-0
International Standard Serial Number (ISSN)
0094-243X
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2012 The Authors, All rights reserved.
Publication Date
01 Jul 2012