Characterization of a Pulsating Drill Bit Blaster
Abstract
The drill bit blaster (DBB) studied in this paper aims to maximize the drilling rate of penetration (ROP) by using a flow interrupting mechanism to create drilling fluid pulsation. The fluctuating fluid pressure gradient generated during operation of the DBB could lead to more efficient bit cutting efficiency due to substrate depressurization and increased cutting removal efficiency and the vibrations created could reduce the drill string friction allowing a greater weight on bit (WOB) to be achieved. In order to maximize these mechanisms the effect of several different DBB design changes and operating conditions was studied in above ground testing. An analytical model was created to predict the influence of various aspects of the drill bit blaster design, operating conditions and fluid properties on the bit pressure characteristics and compared against experimental results. The results indicate that internal tool design has a significant effect on the pulsation frequency and amplitude, which can be accurately modeled as a function of flowrate and internal geometry. Using this model an optimization study was conducted to determine the sensitivity of the fluid pulsation power on various design and operating conditions. Application of this technology in future designs could allow the bit pressure oscillation frequency and amplitude to be optimized with regard to the lithology of the formations being drilled which could lead to faster, more efficient drilling potentially cutting drilling costs and leading to a larger number of oil and natural gas plays being profitable.
Recommended Citation
N. J. Thorp et al., "Characterization of a Pulsating Drill Bit Blaster," American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, vol. 1A-2016, American Society of Mechanical Engineers (ASME), Jul 2016.
The definitive version is available at https://doi.org/10.1115/FEDSM2016-7868
Department(s)
Geosciences and Geological and Petroleum Engineering
Keywords and Phrases
Bit; Drill; Pulsation; ROP; Vibration; Drilling Fluids; Efficiency; Fluid Mechanics; Heat Transfer; Lithology; Machinery; Microchannels; Natural Gas Well Drilling; Turbulent Flow; Above-Ground Testing; Fluid Pressure Gradient; Optimization Studies; Pressure Characteristics; Pressure Oscillation; Pulsation; Removal Efficiencies; Vibration; Computational Fluid Dynamics
International Standard Book Number (ISBN)
978-0791850282
International Standard Serial Number (ISSN)
0888-8116
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2016 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Jul 2016