Abstract
An approach that integrates artificial neural networks and optimization methods for automating regularly-shaped pattern generation processes is proposed. In the proposed approach the artificial neural network model is used for generating rectangular pattern configurations with an acceptable scrap. Rectangular patterns of different sizes are used as the input of the neural network to generate location and rotation of each pattern when they are combined. The pattern configurations generated through the neural network are represented as decision variables of a mathematical programming model for determining an efficient nesting of different sizes of rectangular patterns for meeting the demand of a given planning horizon. The initial results obtained based on rectangular patterns are reported
Recommended Citation
P. Poshyanonda et al., "Two Dimensional Nesting Problem: Artificial Neural Network and Optimization Approach," Proceedings of the International Joint Conference on Neural Networks, 1992, Institute of Electrical and Electronics Engineers (IEEE), Jan 1992.
The definitive version is available at https://doi.org/10.1109/IJCNN.1992.227258
Meeting Name
International Joint Conference on Neural Networks, 1992
Department(s)
Engineering Management and Systems Engineering
Keywords and Phrases
CAD; Computational Geometry; Nesting; Neural Nets; Neural Network; Optimisation; Optimization; Planning Horizon; Rectangular Pattern Configurations; Rectangular Patterns; Regularly-Shaped Pattern Generation
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 1992 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 1992