Abstract
During the last decades a lot of work has been devoted to develop algorithms that can provide near-optimal solutions for the capacitated vehicle routing problem (CVRP). Most of these algorithms are designed to minimize an objective function, subject to a set of constraints, which typically represents aprioristic costs. This approach provides adequate theoretical solutions, but they do not always fit real-life needs since there are some important costs and some routing constraints or desirable properties that cannot be easily modeled. In this paper, we present a new approach which combines the use of Monte Carlo simulation and parallel and grid computing techniques to provide a set of alternative solutions to the CVRP. This allows the decision-maker to consider multiple solution characteristics other than just aprioristic costs. Therefore, our methodology offers more flexibility during the routing selection process, which may help to improve the quality of service offered to clients.
Recommended Citation
A. A. Juan et al., "SR-2: A Hybrid Algorithm for the Capacitated Vehicle Routing Problem," Proceedings of the 8th International Conference on Hybrid Intelligent Systems, ( HIS '08), Institute of Electrical and Electronics Engineers (IEEE), Sep 2008.
The definitive version is available at https://doi.org/10.1109/HIS.2008.148
Meeting Name
8th International Conference on Hybrid Intelligent Systems, ( HIS '08)
Department(s)
Engineering Management and Systems Engineering
Keywords and Phrases
Hybrid Algorithms; Simulations; Vehicle Routing Problem
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2008 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Sep 2008