Abstract
Power system stabilizers are widely used to generate supplementary control signals for the excitation system in order to damp out the low frequency oscillations. In power system control literature, the performances of the proposed controllers were mostly demonstrated using simulation results without any rigorous stability analysis. This paper proposes a stabilizing neural network (NN) controller based on a sixth order single machine infinite bus power system model. The NN is used to approximate the complex nonlinear dynamics of power system. Unlike the other indirect adaptive NN control schemes, there is no offline training process and the NN can be directly used online and learn through time. Magnitude constraint of the activators is modeled as saturation nonlinearities and is included in the Lyapunov stability analysis. The new NN controller design is compared with conventional power system stabilizers (CPSS) whose parameters are fine tuned by particle swarm optimization (PSO). Simulation results demonstrate that the proposed NN controller design can successfully damp out power system oscillations. The control algorithms of this paper can also be applied to other similar nonlinear control problems.
Recommended Citation
W. Liu et al., "Adaptive Neural Network Based Stabilizing Controller Design for Single Machine Infinite Bus Power Systems," DCDIS A Supplement, Advances in Neural Networks, vol. 14, no. S1, pp. 494 - 502, Watam Press, Jan 2007.
Department(s)
Engineering Management and Systems Engineering
Second Department
Computer Science
Third Department
Electrical and Computer Engineering
Keywords and Phrases
Particle Swarm Optimization; Power Systems; Stabilizing Control; Neural networks (Computer science)
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2007 Watam Press, All rights reserved.
Publication Date
01 Jan 2007
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Systems Engineering Commons