Abstract

Multi-objective Optimization Problems (MOPs) are commonly encountered in the study and design of complex systems. Pareto dominance is the most common relationship used to compare solutions in MOPs, however as the number of objectives grows beyond three, Pareto dominance alone is no longer satisfactory. These problems are termed "Many-Objective Optimization Problems (MaOPs)". While most MaOP algorithms are modifications of common MOP algorithms, determining the impact on their computational complexity is difficult. This paper defines computational complexity measures for these algorithms and applies these measures to a Multi-Objective Evolutionary Algorithm (MOEA) and its MaOP counterpart.

Department(s)

Engineering Management and Systems Engineering

Publication Status

Open Access

Keywords and Phrases

Computational complexity; Many-objective optimization problem; MaOP; MOEA; MOP; Multi-objective optimization problem; Multiobjective evolutionary algorithm

International Standard Serial Number (ISSN)

1877-0509

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 Elsevier, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Publication Date

01 Jan 2014

Share

 
COinS