Abstract

This Paper Presents an Improvement of the ELMVIS+ Method that is Proposed for Fast Nonlinear Dimensionality Reduction. the ELMVIS++C Has an Additional Supervised Learning Component Compared to ELMVIS+, Which is Originally an Unsupervised Method as Like the Majority of the Other Dimensionality Reduction Method. This Component Prevents Samples under the Same Class Being Separated Apart from Each Other. in This Improved Method, the Importance of the Supervised Component Can Be Further Tuned to Have Different Level of Influence. the Test Results on Four Datasets Indicate that the Proposed Improvement Not Only Maintains the Performance of ELMVIS+, But Also is Extremely Beneficial for Certain Applications Where the Visualization of the Data in Relation with the Class Becomes an Important Issue.

Department(s)

Engineering Management and Systems Engineering

International Standard Book Number (ISBN)

978-150900619-9

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

31 Oct 2016

Share

 
COinS