A Study on the Network Traffic of Connexion by Boeing: Modeling with Artificial Neural Networks
Abstract
This paper proposes using artificial neural network (ANN)-based architectures for modeling and predicting network traffic. Application on the Connexion by Boeing® (CBB) global broadband network was evaluated to establish feasibility. Accurate characterization and prediction of network traffic is essential for network resource sizing and for real-time network management. As networks increase in size and complexity the task becomes increasingly difficult. Current methods try to model network bandwidth through linear mathematical expressions that are not sufficiently adaptable or scalable. Accuracy of these models is based on detailed characterization of the traffic stream measured at points along the network that are subject to constant variation and evolution. The main contribution of this paper is development of a methodology that allows utilization of artificial neural networks with the capability for adaptation. A simulation model was constructed and feasibility tests were run to evaluate the applicability on the CBB network and to demonstrate improvements in accuracy over existing methods.
Recommended Citation
D. K. Swift and C. H. Dagli, "A Study on the Network Traffic of Connexion by Boeing: Modeling with Artificial Neural Networks," Engineering Applications of Artificial Intelligence, Elsevier, Jan 2007.
The definitive version is available at https://doi.org/10.1016/j.engappai.2008.04.019
Department(s)
Engineering Management and Systems Engineering
Keywords and Phrases
Artificial Neural Network; Bandwidth; Connexion; Network Modeling; Internet; Perceptrons
International Standard Serial Number (ISSN)
0952-1976
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2007 Elsevier, All rights reserved.
Publication Date
01 Jan 2007