Abstract
Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area monitor and wide-area coordinating neurocontroller (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm, and multiple flexible ac transmission system (FACTS) devices. The wide-area monitor is a radial basis function neural network (RBFNN) that identifies the input-output dynamics of the nonlinear power system. Its parameters are optimized through a particle swarm optimization (PSO) based method. The WACNC is designed by using the dual heuristic programming (DHP) method and RBFNNs. It operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance, and therefore helps improve system-wide dynamic and transient performance.
Recommended Citation
W. Qiao et al., "DHP-Based Wide-Area Coordinating Control of a Power System with a Large Wind Farm and Multiple FACTS Devices," Proceedings of International Joint Conference on Neural Networks, 2007, Institute of Electrical and Electronics Engineers (IEEE), Aug 2007.
The definitive version is available at https://doi.org/10.1109/IJCNN.2007.4371281
Meeting Name
International Joint Conference on Neural Networks, 2007
Department(s)
Electrical and Computer Engineering
Sponsor(s)
National Science Foundation (U.S.)
Keywords and Phrases
Flexible AC Transmission Systems; Mathematical Programming; Neurocontrollers; Particle Swarm Optimisation; Power System Control; Radial Basis Function Networks; Wind Power
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2007 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Aug 2007