Abstract
When running, vehicles with internal combustion engines radiate electromagnetic emissions that are characteristic of the vehicle. Emissions depend on the electronics, harness wiring, body type, and many other features. Since emissions are unique to each vehicle, these may be used for identification purposes. This paper investigates a procedure for detecting and identifying vehicles based on their RF emissions. Parameters like the average magnitude or standard deviation of magnitude within a frequency band were extracted from measured emission data. These parameters were used as inputs to an artificial neural network (ANN) that was trained to identify the vehicle that produced the emissions. The approach was tested using the emissions captured from a Toyota Tundra, a GM Cadillac, a Ford Windstar, and ambient noise. The ANN was able to classify the source of signals with 99% accuracy when using emissions that captured an ignition spark event.
Recommended Citation
X. Dong et al., "Detection and Identification of Vehicles Based on Their Unintended Electromagnetic Emissions," IEEE Transactions on Electromagnetic Compatibility, vol. 48, no. 4, p. 759, Institute of Electrical and Electronics Engineers (IEEE), Nov 2006.
The definitive version is available at https://doi.org/10.1109/TEMC.2006.882841
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Detectors; Electromagnetic Radiation; Identification; Neural Networks; Vehicles
International Standard Serial Number (ISSN)
0018-9375
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Nov 2006