Abstract
This paper presents the design of a companding nonuniform optimal scalar quantizer for speech coding. The quantizer is designed using two neural networks to perform the nonlinear transformation. These neural networks are used in the front and back ends of a uniform quantizer. Two approaches are presented in this paper namely adaptive critic designs and particle swarm optimization, aiming to maximize the signal-to-noise ratio. The comparison of these optimal quantizer designs over a bit-rate range of 3-6 is presented. The perceptual quality of the coding is evaluated by the International Telecommunication Union's Perceptual Evaluation of Speech Quality standard
Recommended Citation
G. K. Venayagamoorthy and W. Zha, "Comparison of Nonuniform Optimal Quantizer Designs for Speech Coding with Adaptive Critics and Particle Swarm," IEEE Transactions on Industry Applications, Institute of Electrical and Electronics Engineers (IEEE), Jan 2007.
The definitive version is available at https://doi.org/10.1109/TIA.2006.885897
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
ACDs; Adaptive Critic Designs; International Telecommunication Union; PESQ; PSO; Perceptual Evaluation of Speech Quality Standard; Adaptive Critics; Neural Nets; Neural Networks; Nonlinear Transformation; Nonuniform Optimal Scalar Quantizer Designs; Particle Swarm Optimization; Perceptual Evaluation of Speech Quality; Quantization; Signal-To-Noise Ratio; Speech Coding
International Standard Serial Number (ISSN)
0093-9994
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2007 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 2007