Information Fusion and Situation Awareness using ARTMAP and Partially Observable Markov Decision Processes
Abstract
For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research involves the use of neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator's input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided along with an example scenario.
Recommended Citation
N. Brannon et al., "Information Fusion and Situation Awareness using ARTMAP and Partially Observable Markov Decision Processes," Proceedings of the IEEE International Conference on Neural Networks (2006, Vancouver, BC, Canada), pp. 2023 - 2030, Institute of Electrical and Electronics Engineers (IEEE), Jul 2006.
The definitive version is available at https://doi.org/10.1109/IJCNN.2006.246950
Meeting Name
International Joint Conference on Neural Networks 2006, IJCNN '06 (2006: Jul. 16-21, Vancouver, BC, Canada)
Department(s)
Electrical and Computer Engineering
International Standard Book Number (ISBN)
978-0780394902
International Standard Serial Number (ISSN)
1098-7576
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
21 Jul 2006