Abstract
This work presents an adaptive force-balancing control (AFBC) scheme with actuator limits for a MEMS Z-axis gyroscope. The purpose of the adaptive force-balancing control is to identify major fabrication imperfections so that they are properly compensated unlike the case of conventional force-balancing controlled gyroscope. The proposed AFBC scheme controls the vibratory modes of the proof mass while ensuring that the control input satisfies the magnitude constraints and the performance of the gyroscope is enhanced in the presence of fabrication uncertainties. Consequently, commonly reported problems of MEMS gyroscope such as quadrature compensation, drive and sense axes frequency tuning are not needed and closed-loop identification of the angular rate is now possible without measuring the input/output phase difference. The proposed scheme also compensates the cross-damping terms that cause the zero-rate output (ZRO). Simulation results justify theoretical conclusions.
Recommended Citation
M. Hameed and J. Sarangapani, "Adaptive Force-Balancing Control of MEMS Gyroscope with Actuator Limits," Proceedings of the 2004 American Control Conference, 2004, Institute of Electrical and Electronics Engineers (IEEE), Jan 2004.
Meeting Name
2004 American Control Conference, 2004
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Keywords and Phrases
Adaptive Force Balancing Control; Closed Loop Systems; Gyroscopes; Uncertain Systems
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2004 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 2004
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Operations Research, Systems Engineering and Industrial Engineering Commons