Analog Hardware For Detecting Discontinuities In Early Vision

Abstract

The detection of discontinuities in motion, intensity, color, and depth is a well-studied but difficult problem in computer vision [6]. We discuss the first hardware circuit that explicitly implements either analog or binary line processes in a deterministic fashion. Specifically, we show that the processes of smoothing (using a first-order or membrane type of stabilizer) and of segmentation can be implemented by a single, two-terminal nonlinear voltage-controlled resistor, the "resistive fuse"; and we derive its current-voltage relationship from a number of deterministic approximations to the underlying stochastic Markov random fields algorthms. The concept that the quadratic variation functionals of early vision can be solved via linear resistive networks minimizing power dissipation [37] can be extended to non-convex variational functionals with analog or binary line processes being solved by nonlinear resistive networks minimizing the electrical co-content. We have successfully designed, tested, and demonstrated an analog CMOS VLSI circuit that contains a 1D resistive network of fuses implementing piecewise smooth surface interpolation. We furthermore demonstrate the segmenting abilities of these analog and deterministic "line processes" by numerically simulating the nonlinear resistive network computing optical flow in the presence of motion discontinuities. Finally, we discuss various circuit implementations of the optical flow computation using these circuits. © 1990 Kluwer Academic Publishers.

Department(s)

Electrical and Computer Engineering

International Standard Serial Number (ISSN)

1573-1405; 0920-5691

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Springer, All rights reserved.

Publication Date

01 Jun 1990

Share

 
COinS