Abstract

Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking. © 2012 IEEE.

Department(s)

Electrical and Computer Engineering

Second Department

Computer Science

Keywords and Phrases

Hamilton-Jacobi-Bellman (HJB) equation; helicopter unmanned aerial vehicle (UAV); neural network (NN); nonlinear optimal control

International Standard Serial Number (ISSN)

2162-2388; 2162-237X

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Apr 2013

Share

 
COinS