Abstract

For many control applications, identifying an optimal operating point by maximizing/minimizing a performance function is important. This paper applies the extremum-seeking method to nonaffine, nonlinear discrete-time systems stabilized by an optimal adaptive controller. First, a novel averaging method is used for the nonlinear discrete-time systems to show that their output unique extrema are stable equilibrium points. Then, a singular perturbation method in discrete time is employed to show that the overall closed loop system will dynamically converge to the extremum. The applicability of this scheme is numerically verified on a Homogeneous Charge Compression Ignition (HCCI) model validated experimentally and expressed as an uncertain nonaffine, nonlinear discrete-time dynamic system. This proposed method is able to find an operating point that not only maximizes the engine's efficiency, but also maintains the pressure rise rate (PRR) within the engine's operating limits. © 2014 American Automatic Control Council.

Department(s)

Electrical and Computer Engineering

Second Department

Computer Science

Third Department

Mechanical and Aerospace Engineering

Keywords and Phrases

Adaptive systems; Mechanical systems/robotics; Optimization

International Standard Book Number (ISBN)

978-147993272-6

International Standard Serial Number (ISSN)

0743-1619

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jan 2014

Share

 
COinS