Abstract

The large number of interconnects in high-speed circuits is a major bottleneck for fast simulation of such circuits. Recently, waveform relaxation methods based on transverse partitioning (WR-TP) were proposed to address this issue. It was shown that the complexity of WR-TP grows only linearly with the number of lines. However, as the coupling between the lines becomes stronger, the WR-TP algorithm either fails to converge or the number of iterations required for convergence increases. in this paper, an overlapping partitioning method for WR-TP is presented, which overcomes the effect of strong coupling between the lines. Numerical examples are presented which demonstrate the accuracy and efficiency of the proposed method for tightly coupled lines. © 2012 IEEE.

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

High-speed interconnects; overlapping partitioning; transient simulation; transverse partitioning; waveform relaxation

International Standard Serial Number (ISSN)

2156-3950

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers; Electronics Packaging Society, All rights reserved.

Publication Date

22 May 2012

Share

 
COinS