Abstract

Photovoltaic (PV) system modeling is used throughout the photovoltaic industry for the prediction of PV system output under a given set of weather conditions. PV system modeling has a wide range of uses including: prepurchase comparisons of PV system components, system health monitoring, and payback (return on investment) times. in order to adequately model a PV system, the system must be characterized to establish the relationship between given weather inputs (e.g., irradiance, spectrum, temperature) and desired system outputs (e.g., AC power, module temperature). Traditional approaches to system characterization involve characterizing and modeling each component in a PV system and forming a system model by successively using component models. This paper lays the groundwork for using a Recurrent Neural Network (RNN) to characterize and model an entire PV system without the need to characterize or model the individual system components. Input/output relationships are learned by the RNN using measured system performance data and correlated weather data. Thus, this method for characterizing and modeling PV systems is useful for existing PV system installations with several weeks of correlated system performance and weather data. © 2011 IEEE.

Department(s)

Electrical and Computer Engineering

International Standard Book Number (ISBN)

978-145771086-5

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

24 Oct 2011

Share

 
COinS