Abstract

The electric field integral equation (EFIE) method is one of the most commonly-adopted computational electromagnetic methods. Its popularity stems from the efficient surface triangulation, excellent numerical precision, and the powerful capability of handling open and complex geometries. However, when the frequency tends to zero, the method-of-moment (MoM) solution of EFIE using the Rao-Wilton-Glisson (RWG) basis functions suffers from the low-frequency breakdown, where the contribution from the vector potential is extremely imbalanced with that from the scalar potential. As a result, the matrix representation of EFIE operator is highly ill-conditioned and cannot be inverted reliably and efficiently. © 2013 IEEE.

Department(s)

Electrical and Computer Engineering

International Standard Book Number (ISBN)

978-147991129-5

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Dec 2013

Share

 
COinS