Abstract

Graphene plasmonics have attracted significant attention in the past few years due to the remarkable optical and electrical properties of graphene. A highly effective method based on surface integral equations (SIE) in the frequency domain is proposed to describe both linear and nonlinear effects of graphene efficiently and accurately. Graphene, a centrosymmet-ric material, can possess second harmonic generation (SHG) when the conductivity is nonlocal. In this work, the fundamental harmonic (FH) of a graphene wrapped particle is studied as the first benchmark by introducing a conducting surface in SIE. Then it is modified to analyze a graphene-based patch antenna in both FH and SHG. This method can be extended to other two-dimensional materials easily, and fast multipole algorithm can be applied to accelerate the simulation.

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

graphene; nonlinear; surface integral equation

International Standard Book Number (ISBN)

978-099600787-0

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

23 May 2018

Share

 
COinS