Abstract

The superior ability of plasmonic structures to manipulate light has propelled their extensive applications in nanophotonics techniques and devices. Computational electromagnetics plays a critical role in characterizing and optimizing the nanometallic structures. In this paper, a general numerical algorithm, which is different from the commonly used discrete dipole approximation, the finite-difference time-domain, and the surface integral equation (SIE) method, is proposed to model plasmonic nanostructures. In this algorithm, the generalized impedance boundary condition (GIBC) based on the finite element method (FEM) is formulated and converted to the SIE. The plasmonic nanostructures with arbitrary inhomogeneity and shapes are modeled by the FEM. Their complex electromagnetic interactions are accurately described by the SIE method. As a result, the near field of plasmonic nanostructures can be accurately calculated. The higher order basis functions, together with the multifrontal massively parallel sparse direct solver, are involved to provide a higher order accurate and fast solver. © 2011 IEEE.

Department(s)

Electrical and Computer Engineering

Comments

National Natural Science Foundation of China, Grant B07046

Keywords and Phrases

Boundary integral equation (BIE); finite element method (FEM); generalized impedance boundary condition (GIBC); plasmonic nanostructures

International Standard Serial Number (ISSN)

1536-125X

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Mar 2012

Share

 
COinS