Abstract

A challenging and interesting issue for the solution of large electromagnetic problems is the efficient, sufficiently accurate modeling of the broadband skin-effect loss for conducting planes and 3-D shapes. The inclusion of such models in an electromagnetic (EM) solver can be very costly in compute time and memory requirements. These issues are particularly important for the class of signal, power, and noise integrity (NI) problems. In this paper, we concentrate on partial element equivalent circuit (PEEC)-type methods which are suitable for the solution of this class of problems. Progress has been made recently in the design of skin-effect models. The difficult issues are broadband frequency-domain or time-domain problems. These models are considered in this paper. We present several solution methods, and we compare results obtained with these approaches. © 1963-2012 IEEE.

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

Modified nodal analysis (MNA); noise integrity (NI); partial element equivalent circuit (PEEC); power integrity (PI); signal integrity (SI); transmission line (TL)

International Standard Serial Number (ISSN)

0018-9219

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jan 2013

Share

 
COinS