In this paper, we utilize the deep learning approach for the subwavelength imaging in far-field, which is realized by the near-field resonant metalens at microwave frequencies. The resonating metalens consisting of split-ring resonators (SRRs) are equipped with the strong magnetic coupling ability and can convert evanescent waves into propagating waves using the localized resonant modes. The propagating waves in the far-field are utilized as the input of a trained deep convolutional neural network (CNN) to realize the imaging. The training data for establishing the deep CNN are obtained by the EM simulation tool. Besides, the white Gaussian noise is added into the training data to simulate the interference in the real application scenario. The proposed CNN composes of three pairs of convolutional and activation layers with one additional fully connected layer to realize the recognition, i.e., the imaging process. The feasibility of utilizing the trained deep CNN for imaging is validated by numerical benchmarks. Distinguished from the subwavelength imaging methods, the spatial response and Green's function need not be measured and evaluated in the proposed method.


Electrical and Computer Engineering

Publication Status

Open Access

Keywords and Phrases

Convolutional neural network; machine learning; resonant metalens; subwavelength imaging

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2024 The Authors, All rights reserved.

Publication Date

01 Jan 2019