Abstract

An intermittent pattern is observed in the modeling of interfacial cyclic-loading crack growth at high-angle grain boundaries in ternary Fe-Ni-Cr alloys. Different from conventional wisdom of stress-intensity factor, the abrupt crack advances are found driven by extreme value statistics - namely, the aggregation of atoms with most compressive residual stresses. In addition, inherently non-affine atomic stress fluctuations are discovered, and the fluctuations peak at intermediate level of chemical heterogeneity, causing the fastest crack growth. Implications of such nonmonotonic mechanism in regard to the origin of intermediate-temperature embrittlement phenomena are also discussed.

Department(s)

Electrical and Computer Engineering

Second Department

Computer Science

Comments

National Science Foundation, Grant DMR-1944879

International Standard Serial Number (ISSN)

2475-9953

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 American Physical Society, All rights reserved.

Publication Date

01 Jul 2023

Included in

Metallurgy Commons

Share

 
COinS