Abstract

Ultra-wideband (UWB) ranging techniques can provide accurate distance measurement under line-of-sight (LOS) conditions. However, various walls and obstacles in indoor non-LOS (NLOS) environments, which obstruct the direct propagation of UWB signals, can generate significant ranging errors. Due to the complex through-wall UWB signal propagation, most conventional studies simplify the ranging error model by assuming that the incidence angle is zero or the relative permittivity's for different walls are the same to improve the through-wall UWB localization performance. Considering walls are different in realistic settings, this article presents a through-multiple-wall NLOS mitigation method for UWB indoor positioning. First, spatial geometric equilibrium equations of UWB through-wall propagation and a numerical method are developed for the precise modeling of UWB through-wall ranging errors. Then, calculated error maps are determined numerically without field measurements. Finally, the determined error maps are combined with a gray wolf optimization algorithm for localization. The proposed method is evaluated via field experiments with four rooms, three walls, and six penetration cases. The results demonstrate that the method can strongly mitigate the multi-wall. NLOS effects on the performance of UWB positioning systems. This solution can reduce project costs and number of power supplies for UWB indoor positioning applications.

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

Error map; gray wolf optimization (GWO); indoor localization; non-line-of-sight (NLOS); through-wall; ultra-wideband (UWB)

International Standard Serial Number (ISSN)

1941-0050; 1551-3203

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jul 2023

Share

 
COinS